随着经济和社会发展,技术变得越来越复杂,用人工智能来提升决策效率极大地减轻了人类的负担。因此,世界经济论坛将人工智能描述为第四次工业革命的关键驱动力。
在新冠肺炎疫苗开发过程中,人工智能发挥了关键作用。但你可能还没有意识到,很多习以为常的事物同样依赖人工智能。从过滤垃圾邮件到帮助火车准点运行,日常生活的背后随处可见人工智能的影子。
下面编者将为大家盘点日常生活中常见的十大AI应用。
1. 电子邮件一般来说,电子邮件供应商会使用人工智能算法来过滤垃圾邮件。考虑到全球77%的电子邮件都是垃圾邮件,这是非常有效的。谷歌表示,只有不到0.1%的垃圾邮件能够通过其人工智能过滤器。此外,电子邮件营销人员会利用人工智能追踪谁在何时打开邮件,以及他们对此如何回应。谷歌的AI工具会在云存储中读取文档,以便将最合适的材料呈现给用户。不过也有人因此质疑,通过阅读内容来瞄准广告的算法正在侵犯我们的隐私。
2. 手机人工智能将智能手机上的许多功能都自动化了,从文本常用关联词到声控个人助理都是非常典型的例子。甚至于手机屏幕适应周遭光线的方式、电池寿命的优化等等也取决于人工智能。但也有一些批评人士担心这其中隐藏的风险。比如,无论你是否在打电话,声控助理都会学习并试图理解你说的所有话,不管目的是否是否善意,这就为监视监听创造了机会。
3.银行在世界各地,网上银行极为普遍,基于人工智能的应用也屡见不鲜:客服接待、核验用户身份、打击欺诈、评估客人信誉并据此做出贷款决定等等。
人工智能可以监控交易,人工智能聊天机器人可以回答你与账户相关的问题。在SAS研究所最近的一项调查中,超过三分之二的银行表示,它们使用人工智能聊天机器人,近63%的银行表示,它们使用人工智能进行欺诈检测。
4. 医学要拍x光片吗?很多人脑海中浮现的画面是:临床医生穿着白大褂进行研究诊断。但现在可以暂时想象一下另外一种可能:最初的分析由人工智能算法完成。事实上,AI非常擅长诊断问题。在一次用胸透检测癌症的实验中,一种名为DLAD的人工智能算法击败了18名医生中的17名。
此外,与银行业一样,聊天机器人也被部署在医疗保健领域,用于与患者沟通。比如预约,甚至作为医生的虚拟助手。
然而,批评人士表示人工智能诊断不能成为一个完全不透明的“黑匣子”。人工智能也有误判的可能。医生需要知道它们是如何工作的才能信任它们。此外这也涉及到隐私、数据保护和公平的问题。
5. 自动驾驶人工智能是迈向自动驾驶汽车的核心。在新冠疫情影响下,自动驾驶技术开始加速发展,“无人接触”的快递物流服务就是其目标之一,中国现在就有一支“机器人出租车”车队在上海运营。但是自动驾驶的安全问题依然悬而未决。在过往发生的事故中,因自动驾驶汽车造成的伤亡至今令人心有余悸。另外关于事故的追责和伦理问题,目前也存在争议。
6. 火车和飞机传统的轨道胖的铁路信号正在被由AI驱动的驾驶室信号系统所取代,这种系统可以自动控制列车。欧洲列车控制系统允许更多列车使用同一段轨道,同时保持列车之间的安全距离。
迄今为止,人工智能在飞机控制方面的应用仅限于无人机,尽管使用人工智能导航的“飞的”(空中出租车)已经进行了飞行测试。专家表示,当前,相比AI,人类还是更擅长驾驶飞机,但人工智能被广泛应用于航线规划、时刻表优化和预订管理。
7. 拼车和旅行应用程序拼车应用利用人工智能来解决司机和乘客之间的需求冲突。后者想要立即乘车,而司机看重的是他们可以选择工作时间的自由。学习了这些模式的交互方式后,人工智能可以协调双方需求,实现双赢。
旅游应用程序使用人工智能进行个性化推荐,因为算法会了解用户的偏好。酒店搜索引擎Trivago甚至购买了一个人工智能平台,该平台可以根据用户的社交媒体点赞倾向来定制搜索结果。
8. 社交媒体在使用社交媒体时,你可能会常常惊讶于它对你的“了如指掌”。当然,这都取决于人工智能。Facebook的机器学习技术可以识别发布在该平台上的照片中的你的脸,以及日常物品,从而分析你的兴趣和偏好,进而推送内容和广告。
使用领英的求职者也可以从人工智能中受益,人工智能会分析他们的个人资料以及与其他用户的互动情况,来提供工作建议。该平台称,人工智能“与我们所做的一切都交织在一起”。
9. 制造业意外故障是每个生产经理的噩梦。因此,人工智能在监控机器性能方面发挥着关键作用,使维护能够按计划进行,而不是被动进行。专家估计,这将使机器的离线时间减少75%,维修费用减少近三分之一。人工智能还可以预测产品需求的变化,优化生产能力。目前全球约9%的工厂使用人工智能,但德勤表示,93%的公司认为人工智能将是推动该行业增长和创新的关键技术。
10. 调节能源供给风能和太阳能是环保能源,但如果没有风,天空多云会发生什么呢?人工智能技术可以平衡供需,控制热水器等设备,确保它们只在需求低而供应充足时才取电。
谷歌的DeepMind创建了一个人工智能神经网络,它使用天气预报和涡轮机数据进行训练,预测36小时前一个风电场的输出。谷歌表示,通过提高电网的发电量可预测性,它将风能的价值提高了20%。